The Chebyshev wavelets operational matrix of integration and product operation matrix

نویسندگان

  • M. Tavassoli Kajani
  • Abdollah Hadi-Vencheh
  • M. Ghasemi
چکیده

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Operational matrices of integration and product based on Chebyshev wavelets are presented. A general procedure for forming these matrices is given. These matrices play an important role in modelling of problems. Numerical examples are given to demonstrate applicability of these matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Computation Method in Solving Integral Equation by Using the Second Chebyshev Wavelets

In this paper, a numerical method for solving the Fredholm and Volterra integral equations is presented. The method is based upon the second Chebyshev wavelet approximation. The properties of the second Chebyshev wavelet are first presented and then operational matrix of integration of the second Chebyshev wavelets basis and product operation matrix of it are derived. The second Chebyshev wavel...

متن کامل

NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION BY USING CHEBYSHEV WAVELET OPERATIONAL MATRIX OF INTEGRATION

In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...

متن کامل

A new method based on fourth kind Chebyshev wavelets to a fractional-order model of HIV infection of CD4+T cells

This paper deals with the application of fourth kind Chebyshev wavelets (FKCW) in solving numerically a model of HIV infection of CD4+T cells involving Caputo fractional derivative. The present problem is a system of nonlinear fractional differential equations. The goal is to approximate the solution in the form of FKCW truncated series. To do this, an operational matrix of fractional integrati...

متن کامل

An efficient technique for solving systems of integral equations

In this paper, the wavelet method based on the Chebyshev polynomials of the second kind is introduced and used to solve systems of integral equations. Operational matrices of integration, product, and derivative are obtained for the second kind Chebyshev wavelets which will be used to convert the system of integral equations into a system of algebraic equations. Also, the error is analyzed and ...

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

APPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Math.

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2009